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The constant Mode in Free-Space and
Conical Waveguides

J. Van Bladel

Abstract— = constant is one of the Neumann eigenfunctions used
to expand the axialH component in a cylindrical waveguide. It cannot be
omitted, lest erroneous results are obtained in, for example, aperture cou-
pling with the exterior region. This paper investigates whether the same
situation holds for a conical waveguide, and extends the analysis to free
space, which may be considered as a radial waveguide.

Index Terms—Aperture coupling, multipole expansion, waveguides.

I. INTRODUCTION

Recent papers [1], [2] show continuing interest in the spherical mul-
tipole expansion of transient fields. It is, therefore, appropriate to in-
vestigate whether a field behavior that exists in a cylindrical waveguide
may be extended to theradial waveguide formed by free space. The be-
havior in question concerns the expansion ofHz in a cylindrical wave-
guide in terms of the Neumann eigenfunctions mn of the cross sec-
tion (Fig. 1). One of these (normalized) eigenfunctions is the constant
 o = (1=

p
S). Its contribution maynot be ignored in the expansion,

although the (x; y) gradient of o vanishes; hence, does not contribute
to the transverse components of eitherE orH. Since the other Neu-
mann eigenfunctions have zero average value overS (a result of the
well-known orthogonality properties of mn) the o = (1=

p
S) term

is responsible for the average value ofHz over the cross section. Simple
manipulations show that under time–harmonic conditions [3]

(Hz)ave = � 1

j!�0
(uz � Jm)ave � 1

j!�0S c

uz � (un �E)dc:
(1)

This term, therefore, exists only in the presence ofvolumemagnetic
currents (such as the magnetic equivalent of a small electric current
loop) or surfacemagnetic currents (such as theun � E field in the
Sa aperture). It should be emphasized that the contribution (1) is not
an intellectual nicety, but an important factor in the investigation of
field coupling through the waveguide apertureSa. The method is well
known:un�E is assumed given inSa,H�un is expressed in terms
of un�E on both sides ofSa, andH�un is required to be continuous
across the aperture. In this process, which results in an integral equation
for un �E, thez-component ofH intervenes sinceuc � (H� un) =
H z . Fig. 2 shows the error that may appear when the o term is omitted
[4]. This figure evidences a behavior that could have been deduced
from (1) since(Hz)ave exists only “under the aperture.” As a result,
no energy is radiated by the “mode” (hence, the lack of influence of
 o on the resistance), while reactive energy is generated (hence, the
influence of o on the reactance).

Relationship (1) can be rewritten in terms of the flux�m of B
through a cross section. Thus,

�j!�m =
S

JmzdS +
c

(uc � E)dc: (2)
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Fig. 1. Waveguide with electric and magnetic sources.

(a)

(b)

Fig. 2. (a) Slot in a rectangular waveguide. (b) Theoretical and experimental
results for shunt impedance of a rectangular slot (communicated by R. W. Lyon).

This flux is not conservative, a not too surprising property since
div B = �m 6= 0 in the presence of volume currentsJm and since
flux can escape from (or penetrate through) the aperture in the wall.

II. EIGENVECTORS FOR ACONICAL WAVEGUIDE

The field expansion in a conical waveguide is based on two sets of
eigenfunctions. Both of these are defined onS1, the intersection of the
conical volume with a spherical surface of unit radius (Fig. 3). The
Dirichlet eigenfunctions�m(�; !) are defined by the relationships

r2

1�m + k2m�m =0; in S1

�m =0; onC1 (3)

wherer2

1 is the Laplacian on the unit surfaceS1, viz

r2

1�m = r2

�;'�m =
1

sin �

@

@�
sin �

@�m
@�

+
1

sin2 �

@2�m
@'2

:

(4)
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Fig. 3. Conical waveguide with aperture in the wall.

Here, and in the sequel, we use subscript “1” to denote an operator
involving only the� and' coordinates. The indexm is a concise no-
tation for a double index. The Neumann eigenfunctions, on the other
hand, satisfy

r2

1 p + k2p p =0; in S1
@ p
@n

=0; onC1: (5)

The directionn, shown in Fig. 3, is perpendicular to the outer wall, i.e.,
to the tangent plane formed byuR anduc. More specifically,un =
uc � uR. On the basis of a well-known Green’s theorem [5]

S

(ar2

1b� br2

1a)d
 =
c

a
@b

@n
� b

@a

@n
dc (6)

whered
 = sin � d� d', it is easy to show that�m forms an orthog-
onal set with respect to the real scalar product

ha; bi
1
=

S

ab d
: (7)

The same holds for p. We shall assume that both sets are normal-
ized. In the Neumann family, the normalized constant	o = (1= S1),
which maynot be omitted, can also be written in the form(1= 
),
where
 is the solid angle filled by the conical volume. It is interesting
to noteen passantthatkm andkp appear in the study of the field sin-
gularities at the tip of a metallic cone. In fact, their lowest value de-
termines the strength of the singularity. Relevant numerical data are
available in [4] for a few typical cross sections.

Germane to the field expansion are the eigenvectors related to�m
and p. These aregrad

1
�m andgrad

1
 p, where

grad
1
a(�;') =

@a

@�
u� +

1

sin �

@a

@'
u': (8)

Introducing a scalar product

ha;bi =
s

a � b d
 (9)

and taking Green’s theorem

s

ar2

1b+ grad
1
a � grad

1
b d
 =

c

a
@b

@n
dc (10)

into account, it is a simple matter to show that the familygrad
1
�m

forms an orthogonal set. The norm of these vectors is related to the
norm of�m by (10), which gives

s

jgrad
1
�mj2d
 = k2m

s

�2md
 = k2m: (11)

The grad
1
�m vectors are perpendicular toC1. The vectors

uR � grad
1
�m also form an orthogonal set, with the same norm. The

two sets are mutually orthogonal since [5]

s

grad
1
a�(uR � grad

1
b)d
 = �

c

auc � grad1b dc (12)

and the line integral vanishes fora = b = �m. The two sets have
separate purposes, as can be seen by writing the Helmholtz theorem on
the sphere in the form [5]

a(�; ') = grad
1
�+ uR � grad

1
 (13)

wherea is a vector tangent toS1. Clearly,grad�m are suitable to ex-
pand thegrad

1
� term, anduR � grad

1
�m are suitable to expand the

uR � grad
1
 term.

A similar analysis shows thatgrad
1
 p form an orthogonal set, with

norm (11), wherek2m should be replaced byk2p. Further, theuR �
grad

1
 p form another orthogonal set. From (12), these sets are mutu-

ally orthogonal, and there is cross-orthogonality betweengrad
1
�m and

uR � grad
1
 p. In Section III, we shall use these properties to expand

the fields in an arbitrary cross sectionS, part of a spherical surface of
radiusR. The suitable eigenvectors are nowgrads�m andgrads	m,
e.g.,

grads�m(�;') =
1

R

@�m
@�

u� +
1

R sin �

@�m
@'

u' =
1

R
grad

1
�m:

(14)
Orthogonality is now with respect to the scalar product

ha;bi =
s

(a � b)dS (15)

wheredS = R2d
. The normalized eigenfunctions are�m=R and
 m=R, including o=R = 1=

p
S = 1=R

p

. Thus,

s

jgrads�mj2R2d
 =
s

jgrad
1
�mj2d
 = k2m

s

�m
R

2

R2d
 =
s

�2md
 = 1:

III. FIELD EXPANSION IN A CONICAL REGION

Since the electric field is perpendicular to the boundary wall (except
in the aperture, if there is one) it is natural to expande in eigenvectors
that partake of the same property. Such a move will improve conver-
gence. We write

e(r; t) =
m

vm(R; t)grads�m +
p

vp(R; t)grads p � uR:

(16)

The magnetic field, which is tangent to the metal, will similarly be
expanded as

h(r; t) =
m
im(R; t)uR � grads�m +

p

ip(R; t)grads p

+
p 6=o

`p(R; t)
1

R
 puR + `o(R; t)

1

R
p


uR: (17)

The volume source terms must also be expanded,je in terms of the
eigenfunctions and eigenvectors used fore, jm in terms of those used
for h. The various expansions must now be inserted into Maxwell’s
equations, and the coefficients equated on both sides of the equations.
In the absence of an aperture, curle will simply be the sum of the curls
of the terms in the right-hand-side member. In the presence of an aper-
ture, however,e does not satisfy everywhere the boundary conditions
satisfied by the eigenvectors, and “the derivative of the sum” will not be
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equal to the “sum of the derivatives.” This is a classic difficulty, which
is remedied by introducing separate expansions forcurle andcurlh.
A typical derivation is given in the Appendix.

It is well known that the total field can be split into partial TE and
TM modes, which, respectively, involve the “p” and “m” coefficients.
Although this paper concentrates on the`o(R; t) coefficient, all coef-
ficients of the TE mode will nevertheless be considered, for the sake of
completeness. They satisfy the differential system

@vp
@R

+ �o
@ip
@t

=�
1

k2p s

jm � grads pdS

� 1

k2p c

(un � e) � grads pdc
=Ap(R; t) (18)

@ip
@R

+ "o
@vp
@t

� 1

R
`p =� 1

k2p s

je � (grads p � uR)dS

=Bp(R; t) (19)

k2p
vp
R

+ �o
@`p
@t

=�
s

jm � uR p
R
dS

�
c

(un � e) � uR  p
R
dc

=Cp(R; t) (20)

�o
@`o
@t

=� 1

R
p

 s

(jm � uR)dS

� 1

R
p

 c

(un � e) � uR: (21)

The second members show thatun � e has the nature of a surface
magnetic current, in harmony with the classical theory of equivalent
sources. Turning to the solution of the term in`o, we note that it yields
the average radial component ofh over the cross section. Thus,

`o(r; t)

R
p



= hR(R; t)
ave

: (22)

The radial magnetic flux is now

�@�m(R; t)

@t
=

s

(jm � uR)dS +
c

(un � e) � uRdc: (23)

This is the time-dependent equivalent of (2). To proceed with the solu-
tion of (18)–(20), it is appropriate to eliminateip and`p to obtain for
the principal mode functionvp

@2vp
@R2

� 1

c2o

@2vp
@t2

� k2p
R2

vp =
@Ap(R; t)

@R

��o @Bp(R; t)

@t
� 1

R
Cp(r; t): (24)

This equation is of the “spherical transmission line” type. The second
member represents the coupling of theje andjm sources to the mode.
In the time–harmonic regime, the solution outside the sources is a com-
bination of spherical Bessel functions.

For the TM modes, the equations corresponding to (18)–(20) are

@vm
@R

+�o
@im
@t

� 1

R
wm =� 1

k2m s

jm �(uR � grads ��m)dS

� 1

k2m c

(un � e)�(uR�grads ��m)dc

=Bm(R; t) (25)
@im
@R

+"o
@vm
@t

=� 1

k2m s

je �grads�mdS
=Am(R; t) (26)

k2m
im
R

+"o
@wm
@t

=�
s

je � uR �m
R
dS = Cm(R; t): (27)

Elimination gives a differential equation for the principal mode func-
tion im, viz

@2im
@R2

� 1

c2o

@2im
@t2

� k2m
R2

im =
@Am(R; t)

@R
� "o

@Bm(R; t)

@t

� 1

R
Cm(R; t): (28)

IV. FIELD EXPANSION IN FREE SPACE

In the absence of conical conducting boundaries, the distinction be-
tween p and�m disappears, and the expansion is now in terms of the
normalized eigenfunctions

Ymn(�; ') = "m
(2n+ 1)(n�m)!

4�(n+m)!

1=2

C

Pm
n (cos �)

sinm'

cosm'
:

(29)

These eigenfunctions satisfy

r2

1Ymn(�; ') + n(n+ 1)Ymn(�;') = 0 (30)

wheren is an integer. The basic domainS1 is the total solid angle
4�. The functions insinm' andcosm' generate “odd” and “even”
modes, respectively. The eigenfunction corresponding ton = 0,m =
0 is the constant1=

p
4�. The eigenvectors onS1 are nowgrad

1
Ymn

anduR � grad
1
Ymn, where both even and odd families must be in-

cluded. For the evenYnm, e.g.,

grad
1
Ymn = Cnm � sin � Pm

n (cos �)
0

cosm' u�

� m

sin �
Pm
n (cos �) sinm' u' (31)

where[Pm
n (x)]0 = (d Pm

n (x)=dx). The odd eigenvectors follow by
replacingm' by (m' � �=2). These eigenvectors form a complete
orthogonal set with norm

4�

jgrad
1
Ymnj2d
 = n(n+ 1): (32)

The fields belong again to TE and TM families. In the TE family

e(r; t) =
mn

vmn(R; t)gradsYmn � uR

h(r; t) =
m;n

imn(R; t)gradsYmn +
m;n

`mn(R; t)
1

R
YmnuR

+ `o
1

R
p
4�

uR: (33)

Insertion in Maxwell’s equations yields (18)–(26), but without source
terms in(un � e). In addition,k2p must be replaced byn(n + 1) and
R
p

 byR

p
4�. The`o coefficient, for example, must now satisfy

�o
@`o
@t

= � 1

R
p
4� s

(jm � uR) dS:

In the TM family, the expansion is

e(r; t) =
m;n

vmn(R; t)gradsYmn

+
m;n

wmn(R; t)
Ymn

R
uR + wo(R; t)

1

R
p
4�

uR

h(r; t) =
mn

imn(R; t)uR � gradsYmn: (34)
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Fig. 4. Sources in free space.

Insertion in Maxwell’s equations now yields (25)–(27), but without a
source term inun � e, and withn(n + 1) instead ofk2m. The only
difference with (25)–(27) lies in the inclusion of awo coefficient, which
represents the average radial component ofe over a spherical surface.
The differential equation forwo is

"o
@wo
@t

= � 1

R
p
4� s

(je � uR)dS: (35)

The second member is different from zero betweenR1 andR2 only
(Fig. 4). It is necessary to include the “ o ” term in (34) in order to
expand in acompleteset. In terms of fluxes, (23) still holds for the
magnetic flux. Thus,

�@�m(R; t)

@t
= � @

@t s

(b � uR)dS =
s

(jm � uR)dS (36)

but there is now an equivalent relationship for the electric flux, viz

�@�e(R; t)
@t

= � @

@t s

(d � uR)dS =
s

je � uRdS = �@qe
@t

(37)

whereqe is the electric charge contained in the sphere bounded byS.
Note that (37) could have been obtained directly from the equation of
conservation of charge by integrating

div je +
@d

@t
= div je +

@�

@t
= 0 (38)

over the sphere bounded byS. In Fig. 4,�e is zero up toR = R1, after
which its variation is governed by (37).

The following additional remarks are appropriate.

1) The term in o would be needed for the expansion ofe in a
conical waveguide if the walls weremagneticinstead ofelectric.
In this dual situation, the roles ofe andh are exchanged.

2) The electric currentsje may sometimes be advantageously re-
placed by equivalent magnetic currentsjm (or conversely). The
connection is through the relationship

@jm
@t

= � 1

"o
curl je: (39)

The value ofjm(r; t) follows from a time integration of the
second member, and consideration of the initial conditions on
je. Starting fromt = 0, this operation is often written as

jm(r; t) = � 1

"o

t

o

curl je(r; �)d� = � 1

"o
@�1t curl je(r; t): (40)

Such a substitution is appropriate, for example, in replacing a
frill of electric current (a small loop) by an equivalent magnetic
dipole. The equivalence of the sources holds only for points out-
side the source volumeVe, and the curl should be understood in
the sense of distributions. Thus (Fig. 4), for a piecewise contin-
uousje [4]

curl je = fcurl jeg+ je � un�s (41)

where the curly brackets indicate the (usual) curl at an interior
point.

3) The o contribution obviously does not radiate. It represents re-
active energy and is, therefore, important for the evaluation of
the near field andQ of the sources. Radiation, therefore, finds
its origin in the remaining terms of the expansion. The radiation
problem boils down to the solution of a set of differential equa-
tions of the type

@2v

@R2
� 1

c2o

@2v

@t2
� n(n+ 1)

R2
v = f(R; t): (42)

Such a detailed solution normally represents a major effort.
Under time–harmonic conditions, spherical Bessel and Hankel
functions are involved. The solution obtained with these func-
tions can serve as a basis for solving (42) via an inverse Fourier
transformation, which generates time-dependent multipoles [6].
The moments of the latter can also be evaluated directly by
suitable integrations in the time domain. An example of such
a nontrivial evaluation can be found in [1] and [2], where the
source is a surface current

js = js(t)ux

flowing on a circular disk of radiusa. Thex-axis is a diameter
of the disk. The pulse in that application is chosen as a twice-
differentiated Gaussian

js(t) = Ce�(t=
) H2
t




with 
 = (12=7)1=2 T ,H2(x) = 4x2 � 2 and the pulselength

T =

1

�1

j2s t
2dt

1

�1

j2sdt
:

The reader is referred to [1] and [2] for details. The dimension-
less parameter (a=coT ) plays an important role in the analysis
in that its value separates the “small” disks (a� coT ) from the
“large” ones (a � coT ). A careful study of the convergence of
the expansion shows that the number of modes needed is essen-
tially three (a=coT ).

APPENDIX

We expandcurle in terms of the eigenfunctions and eigenvectors
used forh andjm. Thus,

curl e(r; t) =
m

�m(R; t)uR � grads�m +
p

�p(R; t)grads p

=
p+o


p(R; t)
1

R
 puR + 
o(R; t)

1

R
p


uR (43)
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We shall evaluate, as an example, the�p, 
p, and
o coefficients (as-
sociated with the TE mode). Dot multiplying (43) withgrads p and
integrating overS gives

k2p�p =
s

curl e � grads pdS =
s

div(e� grads p)dS

�
s

e � curl grads pdS

but curlgrads p = 0 and

div e�grads p = divs e�grads p +
@

@R
uR � e�grads p :

Since

s

divsdS =
c

(un � a)dc

holds for a tangential vector functiona(�; '), we find

�p =
@vp
@R

+
1

k2p c

(un � e) � grads pdc:

In the next step, we dot multiply (43) with(1=R) p and1=R
p

 to

obtain after integration

R
p =
s

(uR � curl e) pdS

=
s

 pdiv(e� uR)dS

=
s

 pdivs(e� uR)dS

=
s

divs( pe� uR)dS �
s

grads p � (e� uR)dS:

Hence,


p =
1

R c

(un � e) �  puRdc+ k2pvp:

Similarly,


o =
1

R
p

 c

(un � e) �  puRdc:

Insertion of (43) into Maxwell’s equation incurle leads immediately
to (18), (20), and (21).
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Six-Port Self-Calibration Based on Active Loads Synthesis

Toshiyuki Yakabe, Fadhel M. Ghannouchi, Eid E. Eid, Kohei Fujii,
and Hatsuo Yabe

Abstract—An automatic method for self-calibrating six-port reflec-
tometers is reported in this paper. It is based on the use of an active
impedance synthesis system. This self-calibration method allows a com-
pletely autonomous operation, reduces measurement errors caused by the
frequent connecting and disconnecting of calibration standards, and is
suitable for low and high frequencies, where sliding shorts are difficult to
manufacture. In addition, it simplifies operation of six-port reflectometers
to nonspecialized users. The experimented impedance synthesis presented
relies on an in-phase and quadrature vector modulator, and the entire
system is computer controlled.

Index Terms—Microwave measurement, self-calibration, six-port.

I. INTRODUCTION

In order to calibrate a six-port reflectometer at a given frequency,
many different loads, such as short circuit, matched load, and set of
delay lines, have to be connected successively to the measuring port [1].
In theory, 5-1/2 loads are needed to find the junction parameters, but
for experimental considerations, the 13 standards method [1] is usually
adopted, where 13 unknown different loads have to be connected to the
measuring port of the six-port junction.

Thus, automating these procedures requires being able to synthesize
many different loads at the measuring port of the six-port junction. Such
synthesis can be accomplished using an automated passive impedance
tuner systems such as those described in [2] and [3]. However, due to
the finite insertion losses, a perfect open or short circuits cannot be
obtained, especially at high frequencies. In this paper, we propose a
method to avoid such difficulty by using an active loads approach [4],
[5]. This method allows synthesis of any load (even outside the unit
circle) over the Smith chart for calibration purposes. With this method,
all operations that are inherent to the reflectometer such as junction
calibration, become invisible to the user, leaving only a simple exper-
imental procedure for error-box measurements [1] to be done, as in
standard network analyzers.

II. SYSTEM DESCRIPTION

Six-port reflectometers are usually used for finding the reflection co-
efficient of a load placed at the measuring port of the six-port junction.
Six-port theory [1] shows that this complex coefficient is directly re-
lated to the microwave power at each of the four auxiliary ports. By
normalizing these quantities with respect to the reference port, we end
up with three power ratios that can be used to compute the unknown
reflection coefficient.

The block diagram of the system used is shown in Fig. 1. It consists
of the six-port reflectometry system (six-port junction, Schottky diode
detectors, and CPU) and the controllable vector modulator (or a phase
shifter and an attenuator). The incoming signal from the source is split
in two parts using a two-way power divider. One of them feeds port 1
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