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The ¥, = constant Mode in Free-Space and y
Conical Waveguides
Sw x

J. Van Bladel Y
N

: e}, z
Abstract—p, = constant is one of the Neumann eigenfunctions used '\\ ,"

to expand the axialH component in a cylindrical waveguide. It cannot be - c\ 5

omitted, lest erroneous results are obtained in, for example, aperture cou-
pling with the exterior region. This paper investigates whether the same . ) ) )
situation holds for a conical waveguide, and extends the analysis to free Fig- 1.  Waveguide with electric and magnetic sources.
space, which may be considered as a radial waveguide.

Index Terms—Aperture coupling, multipole expansion, waveguides.

|. INTRODUCTION

Recent papers [1], [2] show continuing interest in the spherical mul-
tipole expansion of transient fields. It is, therefore, appropriate to in-
vestigate whether a field behavior that exists in a cylindrical waveguide
may be extended to thradial waveguide formed by free space. The be-
havior in question concerns the expansiorHofin a cylindrical wave- (a)

guide in terms of the Neumann eigenfunctians,, of the cross sec- X (without o = 1)
tion (Fig. 1). One of these (normalized) eigenfunctions is the constai 0 - ) . °
Vo = (1/4/5). Its contribution maynot be ignored in the expansion, | R (with and without y = 1) ‘/
although the, y) gradient ofi’, vanishes; hence, does not contribute n ‘ —
to the transverse components of eitlieor H. Since the other Neu- g . —
mann eigenfunctions have zero average value Svéa result ofthe § 04 —— ~ .
well-known orthogonality properties af,..,.) thev, = (1/+/S) term '§_ ] X (with o = 1)
is responsible for the average valuebf over the cross section. Simple B ]
manipulations show that under time—harmonic conditions [3] _ 10-: o = Experimental
. E points
(H.),..=—- ! (u.,/-.]m)ave—;/uz-(unXE)d(,’. -1
ave Jwito JwpoS J. 1
(1) —20 ~
This term, therefore, exists only in the presence/afimemagnetic ML R AL L R AL B LR
currents (such as the magnetic equivalent of a small electric curre 0.95 1 1.05

loop) or surfacemagnetic currents (such as the x E field in the

S. aperture). It should be emphasized that the contribution (1) is not
an intellectual nicety, but an important factor in the investigation of ()

field coupling through the waveguide apertdie The method is well Fig. 2. (a) Slot in a rectangular waveguide. (b) Theoretical and experimental
known:u, x E is assumed given ifi,, H x u,, is expressed in terms results for shuntimpedance of a rectangular slot (communicated by R. W. Lyon).
of u,, x E on both sides of,, andH x u,, is required to be continuous

across the aperture. In this process, which resgltsin anintegral equaf@f. f.x is not conservative, a not oo surprising property since
for u, x E, thez-component oH intervenes since. - (H x un) = 4, B — ;. + 0 in the presence of volume currerkts, and since

H,.. Fig. 2 shows the error that may appear whentheermis omitted -, can escape from (or penetrate through) the aperture in the wall.
[4]. This figure evidences a behavior that could have been deduced

from (1) since( H. )ave exists only “under the aperture.” As a result,
no energy is radiated by the “mode” (hence, the lack of influence of
¥, on the resistance), while reactive energy is generated (hence, th&€he field expansion in a conical waveguide is based on two sets of

Relative frequency

1. EIGENVECTORS FOR ACONICAL WAVEGUIDE

influence ofy, on the reactance). eigenfunctions. Both of these are defined€in the intersection of the
Relationship (1) can be rewritten in terms of the fl@x, of B conical volume with a spherical surface of unit radius (Fig. 3). The
through a cross section. Thus, Dirichlet eigenfunction®...(f, w) are defined by the relationships
. - 2, 2 f
_jw(I)rn = / szdS + / (llc . E)dc (2) vlo)m + Lm(Dm —0, n 51
< . Sm =0, onCy 3

whereV? is the Laplacian on the unit surfade, viz
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The grad, ¢, vectors are perpendicular t@’;. The vectors
ur x grad, ¢,,, also form an orthogonal set, with the same norm. The
two sets are mutually orthogonal since [5]

/ grad,a-(ug x grad,b)dQ2 = —/ au. - grad;bde  (12)
81 c1
and the line integral vanishes far= b = ¢,,. The two sets have

separate purposes, as can be seen by writing the Helmholtz theorem on
the sphere in the form [5]

Unit radius
a(d, ) = grad; ¢ + ur x grad, v (13)

wherea is a vector tangent t§; . Clearly,gradé,, are suitable to ex-
pand thesrad, ¢ term, andur X grad, ¢,, are suitable to expand the
ur x grad;v term.

A similar analysis shows thatad, ¢, form an orthogonal set, with
Here, and in the sequel, we use subscript “1” to denote an operdtéfm (11), where:?, should be replaced by;. Further, theur x
involving only the# and¢ coordinates. The index is a concise no- grad; ¥, form another orthogonal set. From (12), these sets are mutu-

tation for a double index. The Neumann eigenfunctions, on the ottly orthogonal, and there is cross-orthogonality betwged, ¢., and

Fig. 3. Conical waveguide with aperture in the wall.

hand, satisfy ur x grad,v,. In Section Ill, we shall use these properties to expand
the fields in an arbitrary cross sectién part of a spherical surface of
Vi, + kﬁwp =0, in S radiusR. The suitable eigenvectors are ngwad ., andgrad, ¥,,,
), e.g.,
9y =0, onCh. (5) ¢
a’lt d , (9 ) 1 qumu + 1 a¢7nu 1 d ;
Ta dPm\U, @) = — P e — HErad;QPm.
The direction:, shown in Fig. 3, is perpendicular to the outer walll, i.e., racd. @ v R 06 ° " Rsinb 0p * BB
to the tangent plane formed hyr andu.. More specificallyu, = o ) (14)
u. % ur. On the basis of a well-known Green’s theorem [5] Orthogonality is now with respect to the scalar product
) . . ) b 1 ,b) = -b)dS 15
(aV2b — bV2a)dQ = / <a,3— - ba—”) de  (6) (a.b) / (a-b) (15)
51 ey \ On on

. wheredS = R?dS). The normalized eigenfunctions ase, /R and
whered{} = sin§ d¢ dp, itis easy to show that.,, forms an orthog- /R includingv,/R = 1/vS = 1/RV/%. Thus,
onal set with respect to the real scalar product ) )
. / lgrad 6, |° R*dQ = / lgrad, 6., |°d2 = ki,
(a, by, = / ab dS). ) s 51
St

2

/ <é”> R*dQ :/ 62,dy = 1.
The same holds for,. We shall assume that both sets are normal- s\ It s1
ized. In the Neumann family, the normalized constant= (1//51),
which maynot be omitted, can also be written in the forrh/ /<),
wheref is the solid angle filled by the conical volume. Itis interesting
to noteen passanthatk., andk, appear in the study of the field sin-  Since the electric field is perpendicular to the boundary wall (except
gularities at the tip of a metallic cone. In fact, their lowest value dén the aperture, if there is one) it is natural to exparid eigenvectors
termines the strength of the singularity. Relevant numerical data &h@t partake of the same property. Such a move will improve conver-
available in [4] for a few typical cross sections. gence. We write

Germane to the field expansion are the eigenvectors relateg, to ) , S
andy,. These ar@rad, ¢,, andgrad, 1, where e(r.t) = v (R t)grad b + D vp(R.t)grad, v, X up.
m P

) da 1 da (16)
grad a(f,¢) = T + m@&a (8)

Ill. FIELD EXPANSION IN A CONICAL REGION

The magnetic field, which is tangent to the metal, will similarly be
Introducing a scalar product expanded as

(a.b) = / a-bdQ 9 "EH= Y im(R.Hug x grad,ém + Iz)ip(R-, t)grad, v,
51
p 1 /. p 1
and taking Green’s theorem + Z(p(R,t)EwpuH + ZU(R,t)R—\/ﬁu;-a. (17
= 'V
/ (aV?b + grad,a - g1~adlb>d§2 = / a%dc (10) The volume source terms must also be expangied) terms of the
s1 o On eigenfunctions and eigenvectors usedepj.,, in terms of those used

for h. The various expansions must now be inserted into Maxwell's
ations, and the coefficients equated on both sides of the equations.

In the absence of an aperture, oaill simply be the sum of the curls

of the terms in the right-hand-side member. In the presence of an aper-

ture, howevere does not satisfy everywhere the boundary conditions

satisfied by the eigenvectors, and “the derivative of the sum” will not be

into account, it is a simple matter to show that the fangitgd,; ¢,
forms an orthogonal set. The norm of these vectors is related to
norm of ¢, by (10), which gives

/ |grad]¢,n|2dsz:k3n/ 2, dQ = K2, (11)
S1

S1
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equal to the “sum of the derivatives.” This is a classic difficulty, whiclElimination gives a differential equation for the principal mode func-

is remedied by introducing separate expansions:fiete andcurlh. tion i,,, viz

A typical derivation is given in the Appendix. 5. . . o ,
It is well known that the total field can be split into partial TE andu - iozﬂ - k_'zf’im = 9Am(R.1) -z, 9B (L. 1)

TM modes, which, respectively, involve thg™and “m” coefficients. OR ot R OR ot

Although this paper concentrates on théR, t) coefficient, all coef- _lcm(Rgt)_ (28)

ficients of the TE mode will nevertheless be considered, for the sake of R

completeness. They satisfy the differential system

IV. FIELD EXPANSION IN FREE SPACE

Iy Jip _ 1 [ rad _1,dS
DR Mgy T E s‘lm grad, wpd In the absence of conical conducting boundaries, the distinction be-
1 [ , tweeny, and¢,, disappears, and the expansion is now in terms of the
- E ‘(“n x e) - grad, vpde normalized eigenfunctions
. :A’](R"t)_ (18) . [ @n4+1)(n—m) Ve . sinmep
% +e % _ lg __ 1 /J - (grad, v, X ug)ds Y (8:) = |€m dm(n + m)! P (cos 6) cosmiyp |
OR "9t R RZ T T — T
=B,(R.t) (19) Cmo
2 Up oty . Yp (29)
kpﬁ +Hoa—t = - /Jm . uHEdS
s / These eigenfunctions satisfy
Uy
— u, Xe)-u de .
/c( )R V2V (6, 0) + (4 1) Yo (6.0) = 0 (30)
=Cy(R.1) (20) o _ _ _
at, 1 - wheren is an integer. The basic domah is the total solid angle
Poay =~ RVQ /(Jm “ur)dS 47. The functions insin e andcos mq generate “odd” and “even”
1 - modes, respectively. The eigenfunction correspondingo0, m =
N / (un X €)-ug. (21) 0 is the constant/+/4x. The eigenvectors ofi; are nowgrad, Y;,.,.

andur X grad, Y., where both even and odd families must be in-
The second members show that x e has the nature of a surfacecluded. For the evel...., e.g.,
magnetic current, in harmony with the classical theory of equivalent ,
sources. Turning to the solution of the terninwe note that ityields grad, Y, = Chm {_ sin 6 [P,,T (cos 9)} cos My Uy

the average radial componentlofver the cross section. Thus, m

P’ (cosf)sinmep u¢} (31)

0(r,t) , sin ¢
= [hn(R.1)] . (22) o , .
RVQ ave where[P;*(x)]" = (d Py*(x)/dz). The odd eigenvectors follow by
The radial magnetic flux is now replacingm¢ by (my — w/2). These eigenvectors form a complete

orthogonal set with norm

_90m(Rt) / G - 0R)dS + / (1, x ) - upde.  (23) - ,
ot 5 o / lerad, Ymn|"dQ = n(n + 1). (32)
4w

This is the time-dependent equivalent of (2). To proceed with the solu- ) - )
tion of (18)—(20), it is appropriate to eliminatg and(, to obtain for The fields belong again to TE and TM families. In the TE family

the principal mode function,
e(r,t) = van(R, t)grad Y, X ur

v, B lazvp _ ﬁ _0AL(R, ) mn
OR® ;o R OR B 1) =t (R t)grad Yinn + 3 o (B ) = Vi iz
R
8377(37 t) 1 m,n m,n
— o T 2 Cy(rit). (24) ’ /
ot R 1
+{,———up. (33)

This equation is of the “spherical transmission line” type. The second Ry4r

memb(_ar representg the C,OUDI'nQ ofjbgndjm sources to the mode. Insertion in Maxwell's equations yields (18)—(26), but without source
In the time—harmonic regime, the solution outside the sources IS acqlms in(u. x e). In addition,2 must be replaced by(n + 1) and
n . "p

bination of spherical Bessel functions. - - .
RV by RV47. The, coefficient, for example, must now satis
For the TM modes, the equations corresponding to (18)—(20) are y . P fy

o6, 1

a1”777, 87/777 1 1 " . — = ——————
ap THe gy "RV =T w2 /SJm'(uR x grad, @, )dS Poay RVir

/ Gon - 0s2) dS.

_ k; /C("" x €)- (g X grad 6, )de In the TM family, the expansion is
=B, (R.t) (25) e(r,t) = Z Umn (R, t)grad, Yo,
82:77’) 8‘0771 1 /‘ . e
+=, =—— je-grad, ¢ dS S
OR ot K2, )8 +> 'wmn(R,t)}TuR + wo (R, 1) L ur
=A,.(R.t) (26) e RvAn

]{fnl%—i—so ag;n - _/jC : uk%ds = Cm(B< t) (27) h(r* t) = szn(R’t)uR X gra‘ds}:nn. (34)

mn
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Fig. 4. Sources in free space.

Insertion in Maxwell's equations now yields (25)—(27), but without a
source term im1,, x e, and withn(n + 1) instead ofk2,. The only
difference with (25)—(27) lies in the inclusion ofia coefficient, which
represents the average radial componert o¥er a spherical surface.
The differential equation fow, is

dw, _
ot

£o (35)

— je - ur)dS.
e (Je - ur)
The second member is different from zero betwégnand R, only
(Fig. 4). It is necessary to include thé, ” term in (34) in order to
expand in acompleteset. In terms of fluxes, (23) still holds for the
magnetic flux. Thus,

0
ot

96u(R1) _

5 (b ur)dS = /(_],77 ur)dS  (36)

but there is now an equivalent relationship for the electric flux, viz

86c(R.t) _

ot

a
T ot

dqe
ot
(37)

(d uR)dS / uRdS = -

whereq. is the electric charge contained in the sphere boundet. by
Note that (37) could have been obtained directly from the equation of
conservation of charge by integrating

div <_]

over the sphere bounded By In Fig. 4,¢. is zero up taR = R, after
which its variation is governed by (37).
The following additional remarks are appropriate.
1) The term iny, would be needed for the expansionefn a
conical waveguide if the walls wereagnetidnstead oklectric
In this dual situation, the roles efandh are exchanged.
2) The electric currents. may sometimes be advantageously re-
placed by equivalent magnetic currejits (or conversely). The
connection is through the relationship

od
e+ o

ot (38)

):divjﬁ-i——

Djm
ot

(39)

1
= —Tcur'ljc.

us
The value ofj...(r. t) follows from a time integration of the
second member, and consideration of the initial conditions on,
Jje. Starting fromt = 0, this operation is often written as

1/t 1
Jm(r,t) = _:_/ curl jo(r, 7)d7 = —Taflcul'ljc(r, t). (40)
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Such a substitution is appropriate, for example, in replacing a
frill of electric current (a small loop) by an equivalent magnetic
dipole. The equivalence of the sources holds only for points out-
side the source volumié., and the curl should be understood in
the sense of distributions. Thus (Fig. 4), for a piecewise contin-
uousj. [4]

curl jo = {curl jo } + je X w65 (41)

where the curly brackets indicate the (usual) curl at an interior
point.

The, contribution obviously does not radiate. It represents re-
active energy and is, therefore, important for the evaluation of
the near field and) of the sources. Radiation, therefore, finds
its origin in the remaining terms of the expansion. The radiation

problem boils down to the solution of a set of differential equa-
tions of the type

3)

(77 +1)
2

v=f(R,1). (42)

Such a detailed solution normally represents a major effort.
Under time—harmonic conditions, spherical Bessel and Hankel
functions are involved. The solution obtained with these func-
tions can serve as a basis for solving (42) via an inverse Fourier
transformation, which generates time-dependent multipoles [6].
The moments of the latter can also be evaluated directly by
suitable integrations in the time domain. An example of such
a nontrivial evaluation can be found in [1] and [2], where the
source is a surface current

js = j,.;(f)u

flowing on a circular disk of radius. Thez-axis is a diameter
of the disk. The pulse in that application is chosen as a twice-
differentiated Gaussian

j(t) = Cem W (3)
.

with v = (12/7)'/2 T, Ha(x) = 42® — 2 and the pulselength

J2 aitdt

J2o gkt

The reader is referred to [1] and [2] for details. The dimension-
less parameter(c,T" ) plays an important role in the analysis

in that its value separates the “small” disks< ¢,T") from the
“large” ones ¢ > ¢,T). A careful study of the convergence of

the expansion shows that the number of modes needed is essen-
tially three @/c.T).

T =

APPENDIX

We expandcurle in terms of the eigenfunctions and eigenvectors

ed forh andj,,. Thus,

rle(r,t) _Za,n(R tyup x grad ém + Y By(R, t)grad i,

P
—Z')p (R.1)

1
1)u + R,t)——u
2 T rur + 7% ( )R\/ﬁ R

(43)
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We shall evaluate, as an example, the v, and~, coefficients (as-
sociated with the TE mode). Dot multiplying (43) wighad, ', and
integrating overS gives

kiﬁp = / curl e - grad ¢,dS = / div(e x grad i, )dS
— / e - curl grad, y¥,dS

but curlgrad v, = 0 and

div (e X gradsﬂvp) = div, (e X gradsy’)p) + %uR- (e X gradsl/bp).

/div_qu = / (u, a)de

holds for a tangential vector functietié, ¢), we find

Since

Ovp 1

Bp = IR E /L (u, x e)-grad ¢,dc.

In the next step, we dot multiply (43) with /R)v,, and1/RvQ to
obtain after integration

Ry, :/ (ur - curl e)y,dS

/
-/
-/

Ypdiv(ie X up)dS
Ypdivs(e X ur)dS
div,(¢¥pe X ur)dS — /grdd Yy - (e X ug)dS.
Hence,
Yp = — / (u, x e) -y urde+ kivp.

Similarly,

L /(u X e) - Ppurd
Ny = N . .
" RV i

Insertion of (43) into Maxwell’'s equation imirle leads immediately
to (18), (20), and (21).
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Six-Port Self-Calibration Based on Active Loads Synthesis

Toshiyuki Yakabe, Fadhel M. Ghannouchi, Eid E. Eid, Kohei Fujii,
and Hatsuo Yabe

Abstract—An automatic method for self-calibrating six-port reflec-
tometers is reported in this paper. It is based on the use of an active
impedance synthesis system. This self-calibration method allows a com-
pletely autonomous operation, reduces measurement errors caused by the
frequent connecting and disconnecting of calibration standards, and is
suitable for low and high frequencies, where sliding shorts are difficult to
manufacture. In addition, it simplifies operation of six-port reflectometers
to nonspecialized users. The experimented impedance synthesis presented
relies on an in-phase and quadrature vector modulator, and the entire
system is computer controlled.

Index Terms—Microwave measurement, self-calibration, six-port.

|. INTRODUCTION

In order to calibrate a six-port reflectometer at a given frequency,
many different loads, such as short circuit, matched load, and set of
delay lines, have to be connected successively to the measuring port [1].
In theory, 5-1/2 loads are needed to find the junction parameters, but
for experimental considerations, the 13 standards method [1] is usually
adopted, where 13 unknown different loads have to be connected to the
measuring port of the six-port junction.

Thus, automating these procedures requires being able to synthesize
many differentloads at the measuring port of the six-port junction. Such
synthesis can be accomplished using an automated passive impedance
tuner systems such as those described in [2] and [3]. However, due to
the finite insertion losses, a perfect open or short circuits cannot be
obtained, especially at high frequencies. In this paper, we propose a
method to avoid such difficulty by using an active loads approach [4],
[5]. This method allows synthesis of any load (even outside the unit
circle) over the Smith chart for calibration purposes. With this method,
all operations that are inherent to the reflectometer such as junction
calibration, become invisible to the user, leaving only a simple exper-
imental procedure for error-box measurements [1] to be done, as in
standard network analyzers.

II. SYSTEM DESCRIPTION

Six-port reflectometers are usually used for finding the reflection co-
efficient of a load placed at the measuring port of the six-port junction.
Six-port theory [1] shows that this complex coefficient is directly re-
lated to the microwave power at each of the four auxiliary ports. By
normalizing these quantities with respect to the reference port, we end
up with three power ratios that can be used to compute the unknown
reflection coefficient.

[1] A. Shlivinski and E. Heyman, “Time-domain near-field analysis of The block diagram of the system used is shown in Fig. 1. It consists
short-pulse antennas—Part | : Spherical wave (multipole) expansiomf the six-port reflectometry system (six-port junction, Schottky diode
IEEE Trans. Antennas Propagapt. , vol. 47, pp. 271-279, Feb. 1999. detectors, and CPU) and the controllable vector modulator (or a phase
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agat, vol. 47, pp. 280-286, Feb. 1999.
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Clarendon, 1991, p. 25, 48, 109, 175.

——, Electromagnetic Fields New York: McGraw-Hill, 1964, p. 26,
241, 502, 504.
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plication for radiation from volume source distributiond, Math. Phys.
vol. 37, pp. 682-692, 1996.

——, “Time-domain near-field analyS|s of short-pulse antennas—P.
1 React|ve energy and the anten§g”’ IEEE Trans. Antennas Prop- .

hifter and an attenuator). The incoming signal from the source is split

in two parts using a two-way power divider. One of them feeds port 1
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